1、条件:三角形中一个角为直角。
2、结论:两直角边长度的平方和等于斜边长度的平方。
中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。根据该典故称勾股定理为商高定理。
勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是和,斜边长度是,那么可以用数学语言表达:勾股定理是余弦定理中的一个特例。
a2+b2=c2
直角三角形两直角边分别是6和3,那么斜边就等于3倍根号5。根据勾股定理a的平方+b的平方等于c的平方,6的平方+3的平方等于45,45开平方就等于3倍根号5。
直角三角形两直角边分别是11和8,它的斜边是根号185。根据勾股定理11的平方+8的平方等于根号185。那么这个得数就是根号185。而根号185不能开平方。
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是和,斜边长度是,那么可以用数学语言表达:
勾股定理是余弦定理中的一个特例。
勾股定理的证明如下
按理,勾股定理是有关直角三角形三条边的数量关系的一个定理,涉及的是线段,而圆弧是曲线,计算圆弧的长度与勾股定理似乎没有直接的联系;有时,可以用勾股定理计算半径、弦长、圆心到弦的距离等,再计算圆心角的三角函数值,求出圆心角的度数,再算出弧长。最好你给出一个具体的题目。
勾股定理: 在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(PythagorasTheorem)。是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。 定理: 如果直角三角形两直角边分别为a,b,斜边为c,那么a²+b²=c²即直角三角形两直角边的平方和等于斜边的平方。 如果三角形的三条边a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。(称勾股定理的逆定理)希望有用。
吊车起吊高度根据出杆多少和转盘中心到货物中心距离,按勾股定理计算结果。吊车理论吨位乘以3,再除以要吊的重量能得出距离,除以距离能得出重量,但是吊车的实际能力达不到计算出来的结果,还要把主臂的重量和吊钩的重量算上。所需要吊装物体的重量为11t,吊装时安装的管道中心距离吊车的中心为8m。
勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。
我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证,周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。
勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。